
 
 

 
 

An Introduction to  
Computational Fluid Dynamics 

 
 

Chapter 20 in  
Fluid Flow Handbook 

 
By 

 
Nasser Ashgriz & 
Javad Mostaghimi 

Department of Mechanical & Industrial Eng. 
University of Toronto 

Toronto, Ontario 
 
 
 
 
 
 
 



 1

 
1 Introduction:................................................................................................................ 2 
2 Mathematical Formulation.......................................................................................... 3 

2.1 Governing equations.............................................................................................. 3 
2.2 Boundary Conditions............................................................................................. 5 

2.2.1 Example ....................................................................................................... 7 
3 Techniques for Numerical Discretization ................................................................... 9 

3.1 The Finite Difference Method ............................................................................... 9 
3.2 The Finite Element Method................................................................................. 11 
3.3 The Finite Volume Method ................................................................................. 14 
3.4 Spectral Methods ................................................................................................. 15 
3.5 Comparison of the Discretization Techniques..................................................... 16 

4 Solving The Fluid Dynamic Equations..................................................................... 17 
4.1 Transient-Diffusive Terms .................................................................................. 17 

4.1.1 Finite Difference Approach ....................................................................... 17 
4.1.2 Finite Element Approach........................................................................... 21 

4.2 Transient-Convective Terms ............................................................................... 24 
4.3 Shock Capturing Methods ................................................................................... 26 
4.4 Convective-Diffusive Terms ............................................................................... 27 
4.5 Incompressible Navier-Stokes Equations............................................................ 30 

4.5.1 Pressure-Based Methods............................................................................ 30 
5 Basic Solution Techniques........................................................................................ 34 

5.1 Direct Method...................................................................................................... 34 
5.2 Iterative Methods................................................................................................. 34 

5.2.1 Jacobi and Gauss-Seidel methods.............................................................. 35 
5.2.2 Relaxation methods. .................................................................................. 37 
5.2.3 ADI Method: ............................................................................................. 38 

5.3 Convergence and Stability................................................................................... 39 
5.4 Von Neuman Stability Analysis .......................................................................... 39 
5.5 Convergence of Jacobi and Gauss-Seidel Methods (iterative methods): ............ 41 

6 Building a Mesh........................................................................................................ 44 
6.1 Element Form ...................................................................................................... 44 
6.2 Structured Grid .................................................................................................... 46 

6.2.1 Conformal mapping method...................................................................... 47 
6.2.2 Algebraic method ...................................................................................... 47 
6.2.3 Differential equation method..................................................................... 47 
6.2.4 Block-structured method ........................................................................... 47 

6.3 Unstructured grid................................................................................................. 47 
7 References................................................................................................................. 49 



 2

 

1 Introduction: 
 
This chapter is intended as an introductory guide for Computational Fluid Dynamics 
CFD. Due to its introductory nature, only the basic principals of CFD are introduced 
here.  For more detailed description, readers are referred to other textbooks, which are 
devoted to this topic.1,2,3,4,5 CFD provides numerical approximation to the equations that 
govern fluid motion. Application of the CFD to analyze a fluid problem requires the 
following steps.  First, the mathematical equations describing the fluid flow are written. 
These are usually a set of partial differential equations.  These equations are then 
discretized to produce a numerical analogue of the equations. The domain is then divided 
into small grids or elements. Finally, the initial conditions and the boundary conditions of 
the specific problem are used to solve these equations. The solution method can be direct 
or iterative.  In addition, certain control parameters are used to control the convergence, 
stability, and accuracy of the method.   
 
All CFD codes  contain three main elements: (1) A pre-processor, which is used to input 
the problem geometry, generate the grid, define the flow parameter and the boundary 
conditions to the code.  (2) A flow solver, which is used to solve the governing equations 
of the flow subject to the conditions provided. There are four different methods used as a 
flow solver: (i) finite difference method; (ii) finite element method, (iii) finite volume 
method, and (iv) spectral method.   (3) A post-processor, which is used to massage the 
data and show the results in graphical and easy to read format.     
 
In this chapter we are mainly concerned with the flow solver part of CFD. This chapter is 
divided into five sections. In section two of this chapter we review the general governing 
equations of the flow. In section three we discuss three standard numerical solutions to 
the partial differential equations describing the flow. In section four we introduce the 
methods for solving the discrete equations, however, this section is mainly on the finite 
difference method. And in section five we discuss various grid generation methods and 
mesh structures. Special problems arising due to the numerical approximation of the flow 
equations are also discussed and methods to resolve them are introduced in the following 
sections. 
 
 
 
 
 
 
 
 
 
 
 
 



 3

 

2 Mathematical Formulation 

2.1 Governing equations 
 
The equations governing the fluid motion are the three fundamental principles of mass, 
momentum, and energy conservation. 
 
 

Continuity   0).( =+
∂
∂ Vρρ

∇
t

      (1) 

 

Momentum  Fτ ij ρρ +∇−∇= p
Dt

D .V
     (2) 

 

Energy   Φ.q.V +∇−
∂
∂

=∇+
t
Qp

Dt
D )(eρ     (3) 

 
where ρ is the fluid density, V  is the fluid velocity vector, τij  is the viscous stress tensor,  
p is pressure,  F is the body forces, e is the internal energy, Q is the heat source term,  t is 
time, Φ is the dissipation term, and ∇.q is the heat loss by conduction.  Fourier’s law for 
heat transfer by conduction can be used to describe q as: 
 

Tk∇−=q         (4) 
 
where k is the coefficient of thermal conductivity, and T is the temperature. Depending on 
the nature of physics governing the fluid motion one or more terms might be negligible. 
For example, if the fluid is incompressible and the coefficient of viscosity of the fluid, µ, 
as well as, coefficient of thermal conductivity are constant, the continuity, momentum, 
and energy equations reduce to the following equations: 
 

0. =V∇          (5) 
 

FVV ρµρ +∇−∇= p
Dt
D 2        (6) 

 

Φ+∇+
∂
∂

= Tk
t
Q

Dt
D 2eρ        (7) 

 
 
Presence of each term and their combinations determines the appropriate solution 
algorithm and the numerical procedure.  There are three classifications of partial 
differential equations6; elliptic, parabolic and hyperbolic. Equations belonging to each of 



 4

these classifications behave in different ways both physically and numerically. In 
particular, the direction along which any changes are transmitted is different for the three 
types. Here we describe each class of partial differential equations through simple 
examples: 
 
Elliptic: 
 
Laplace equation is a familiar example of an elliptic type equation.  
 

02 =∇ u         (8) 
 
where u is the fluid  velocity. The incompressible irrotational flow (potential flow) of a 
fluid is represented by this type of equation. Another practical example of this equation is 
the steady state pure heat conduction in a solid, i.e., ∇2T=0, as can be readily obtained 
from equation (7).    
 
Parabolic: 
 
The unsteady motion of the fluid due to an impulsive acceleration of an infinite flat plate 
in a viscous incompressible fluid exemplifies a parabolic equation:  
 

u
t
u 2∇=
∂
∂ ν         (9) 

 
where ν is the kinematic viscosity. Transient diffusion equation is represented with a 
similar equation.  In this type of equations, events propagate into the future, and a 
monotone convergence to steady state is expected.  
 
 
Hyperbolic: 
 
Qualitative properties of hyperbolic equations can be explained by a wave equation. 
 

2

2
2

2

2

x
uc

t
u

∂
∂

=
∂
∂          (10) 

 
where c is the wave speed. In this case, values of solution depend locally on the initial 
conditions. The propagation signal speed is finite. Continuous boundary and initial values 
can give rise to discontinuity. Solution is no more continuous and therefore shocks can be 
observed and captured in this class of equations. 
 
Depending on the flow, the governing equations of fluid motion can exhibit all three 
classifications. 
 



 5

2.2 Boundary Conditions 
 
The governing equation of fluid motion may result in a solution when the boundary 
conditions and the initial conditions are specified. The form of the boundary conditions 
that is required by any partial differential equation depends on the equation itself and the 
way that it has been discretized. Common boundary conditions are classified either in 
terms of the numerical values that have to be set or in terms of the physical type of the 
boundary condition.  For steady state problems there are three types of spatial boundary 
conditions that can be specified: 
 
    I.  Dirichlet  boundary condition:   ( )zyxf ,,1=φ                   (11)  
 
Here the values of the variable φ on the boundary are known constants f1. This allows a 
simple substitution to be made to fix the boundary value. For example, if u is the flow 
velocity, its value may be fixed at the boundary of the domain. For instance, for no-slip 
and no-penetration conditions on the solid walls, the fluid velocity is the same as the 
velocity of the  wall.  
 

II. Neuman boundary condition:  ( )zyxf
n

,,2=
∂
∂φ    (12) 

 
Here the derivatives of the variable φ on the boundary are known f2, and this gives an 
extra equation, which can be used to find the value at the boundary. For example, if the 
velocity does not change downstream of the flow, we can assume that the derivative of u 
is zero at that boundary.  
 

III. Mixed type boundary condition:  ( )zyxf
n

ba ,,3=
∂
∂

+
φφ   (13) 

 
The physical boundary conditions that are commonly observed in the fluid problems are 
as follows:  
 
(A) Solid walls: Many boundaries within a fluid flow domain will be solid walls, and 
these can be either stationary or moving walls. If the flow is laminar then the velocity 
components can be set to be the velocity of the wall. When the flow is turbulent, 
however, the situation is more complex.  
 
(B) Inlets: At an inlet, fluid enters the domain and, therefore, its fluid velocity or 
pressure, or the mass flow rate may be known.  Also, the fluid may have certain 
characteristics, such as the turbulence characterizes which needs to be specified.  
 
(C) Symmetry boundaries: When the flow is symmetrical about some plane there is no 
flow through the boundary and the derivatives of the variables normal to the boundary are 
zero.  
 



 6

(D) Cyclic or periodic boundaries: These boundaries come in pairs and are used to 
specify that the flow has the same values of the variables at equivalent positions on both 
of the boundaries. 
 
(E) Pressure Boundary Conditions: The ability to specify a pressure condition at one or 
more boundaries of a computational region is an important and useful computational tool. 
Pressure boundaries represent such things as confined reservoirs of fluid, ambient 
laboratory conditions and applied pressures arising from mechanical devices. Generally, a 
pressure condition cannot be used at a boundary where velocities are also specified, 
because velocities are influenced by pressure gradients. The only exception is when 
pressures are necessary to specify the fluid properties, e.g., density crossing a boundary 
through an equation of state. 
 
There are typically two types of pressure boundary conditions, referred to as static or 
stagnation pressure conditions. In a static condition the pressure is more or less 
continuous across the boundary and the velocity at the boundary is assigned a value based 
on a zero normal-derivative condition across the boundary. 
 
In contrast, a stagnation pressure condition assumes stagnation conditions outside the 
boundary so that the velocity at the boundary is zero. This assumption requires a pressure 
drop across the boundary for flow to enter the computational region. Since the static 
pressure condition says nothing about fluid velocities outside the boundary (i.e., other 
than it is supposed to be the same as the velocity inside the boundary) it is less specific 
than the stagnation pressure condition. In this sense the stagnation pressure condition is 
generally more physical and is recommended for most applications. 
 
As an example, consider the problem of flow in a section of pipe. If the upstream end of 
the computational region coincides with the physical entrance to the pipe then a 
stagnation condition should be used to represent the external ambient conditions as a 
large reservoir of stationary fluid. On the other hand, if the upstream boundary of the 
computing region is inside the pipe, and many diameters away from the entrance, then the 
static pressure condition would be a more reasonable approximation to flow conditions at 
that location. 
 
(F) Outflow Boundary Conditions: In many simulations there is a need to have fluid 
flow out of one or more boundaries of the computational region. At such "outflow" 
boundaries there arises the question of what constitutes a good boundary condition. 
 
In compressible flows, when the flow speed at the outflow boundary is supersonic, it 
makes little difference how the boundary conditions are specified since flow disturbances 
cannot propagate upstream. In low speed and incompressible flows, however, 
disturbances introduced at an outflow boundary can have an affect on the entire 
computational region. It is this possibility that is discussed in this article. 
 
The simplest and most commonly used outflow condition is that of a “continuative" 
boundary. Continuative boundary conditions consist of zero normal derivatives at the 



 7

boundary for all quantities. The zero-derivative condition is intended to represent a 
smooth continuation of the flow through the boundary. 
 
It must be stressed that the continuative boundary condition has no physical basis, rather 
it is a mathematical statement that may or may not provide the desired flow behavior. In 
particular, if flow is observed to enter the computational region across such a boundary, 
then the computations may be wrong because nothing has been specified about flow 
conditions existing outside the boundary. 
 
As a general rule, a physically meaningful boundary condition, such as a specified 
pressure condition, should be used at out flow boundaries whenever possible. When a 
continuative condition is used it should be placed as far from the main flow region as is 
practical so that any adverse influence on the main flow will be minimal. 
 
 
(G) Opening Boundary Conditions: If the fluid flow crosses the boundary surface in 
either directions an opening boundary condition needs to be utilized. All of the fluid 
might flow out of the domain, or into the domain, or a combination of the two might 
happen.  
 
(H) Free Surfaces and Interfaces: If the fluid has a free surface, then the surface tension 
forces need to be considered. This requires utilization of the Laplace's equation which 
specifies the surface tension-induced jump in the normal stress p s  across the interface:  
 

κσ=sp              (14)                               
 
where σ  represents the liquid-air surface tension and κ  the total curvature of the 
interface7,8,9,10. A boundary condition is required at the contact line, the line at which the 
solid, liquid and gas phases meet. It is this boundary condition which introduces into the 
model information regarding the wettability of the solid surface. 

2.2.1 Example 
In this example a converging-diverging nozzle with a distributed inlet ports is considered. 
Inlet mass flow rate is known and flow exits to the ambient air with atmospheric pressure.  
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic of the flow inside and outside of a converging-diverging nozzle 

Inlet Outlet 



 8

 
Choosing the appropriate boundary conditions can reduce the computer effort. In this 
example the slice shown in Figure 1 is repeated to produce the whole physical domain. 
Using the periodic boundary condition at the imaginary planes shown in Figure 2 can 
reduce the computational domain to a much smaller area. Figure 3 shows the other 
boundary conditions applied to the problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Minimizing the computational domain using periodic boundary condition 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Various Boundary Conditions 

Periodic Boundaries 

Inflow 

Symmetric Boundary

Solid Wall 

Open Boundary 

Outflow



 9

 

3 Techniques for Numerical Discretization  
 
In order to solve the governing equations of the fluid motion, first their numerical 
analogue must be generated. This is done by a process referred to as discretization.  In the 
discretization process, each term within the partial differential equation describing the 
flow is written in such a manner that the computer can be programmed to calculate.  
There are various techniques for numerical discretization.  Here we will introduce three 
of the most commonly used techniques, namely: (1) the finite difference method, (2) the 
finite element method and (3) the finite volume method.  Spectral methods are also used 
in CFD, which will be briefly discussed.  
 

3.1 The Finite Difference Method  
 
Finite difference method utilizes the Taylor series expansion to write the derivatives of a 
variable as the differences between values of the variable at various points in space or 
time.   Utilization of the Taylor series to discretize the derivative of dependent variable, 
e.g., velocity u, with respect to the independent variable, e.g., special coordinated x, is 
shown in Figure 4. Consider the curve in Fig. 4 which represent the variation of u with x, 
i.e., u(x).  After discretization, the curve u(x) can be represented by a set of discrete 
points, ui’s. These discrete points can be related to each other using a Taylor series 
expansion.  Consider two points, (i+1) and (i-1), a small distance ∆x from the central 
point, (i).  Thus velocity  ui can be expressed in terms of Taylor series expansion about 
point (i) as: 
 

( ) ( ) ...
62

3

3

32

2

2

1 +
∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∆⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+=+
x

x
ux

x
ux

x
uuu

i
ii    (15) 

and   
 

( ) ( ) ...
62

3

3

32

2

2

1 +
∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∆

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∆⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=−
x

x
ux

x
ux

x
uuu

i
ii    (16) 

 
These equations are mathematically exact if number of terms are infinite and ∆x is small. 
Note that ignoring these terms leads to a source of error in the numerical calculations as 
the equation for the derivatives is truncated. This error is referred to as the truncation 
error. For the second order accurate expression, the truncation error is: 
 

( )
!

1

3 n
x

x
u n

n i
n

n −∞

=

∆
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂∑  

 
 



 10

 
 

 
    
 
 
 
        
 
 
 
 
 
 
 
 
 
 

Figure 4. Location of points for Taylor series 

 
By subtracting or adding these two equations, new equations can be found for the first 
and second derivatives at the central position i. These derivatives are  
 

( )
62

2

3

3
11 x

x
u

x
uu

x
u

i

ii

i

∆
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∆
−

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ −+        (17) 

and      

( )22
11

2

2

)(
2 xO

x
uuu

x
u iii

i

∆+
∆

+−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂ +−        (18) 

 
Equations (17) and (18) are referred to as the central difference equations for the first and 
the second derivatives, respectively. Further derivatives can also be formed by 
considering equations  (15) and (16) in isolation. Looking at equation (15), the first-order 
derivative can be formed as  
  

( )
22

2
1 x

x
u

x
uu

x
u

i

ii

i

∆
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∆
−

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ +              (19) 

                                       
This is referred to as the Forward difference. Similarly, from equation (16) another first-
order derivative can be formed, i.e.,  
   

( )
22

2
1 x

x
u

x
uu

x
u

i

ii

i

∆
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∆
−

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ −        (20) 

 

u 

ui+1 

ui-1 

ui 

xi-∆x xi+∆x xi x 



 11

This is referred to as the Backward difference. As noted by the expressions, difference 
formulae are classified in two ways: (1) by the geometrical relationship of the points, 
namely, central, forward, and backward differencing; or (2) by the accuracy of the 
expressions, for instance, central difference is second-order accurate, whereas, both 
forward and backward differences are first-order accurate, as the higher order terms are 
neglected.  
 
We can obtain higher order approximations by applying the Taylor series expansion for 
more points. For instance, a 3-point cluster would result in a second order approximation 
for the forward and backward differencing, rather than a first order approximation: 
 
Forward difference:    

( ) ( )22143
2

1 xOuuu
xx

u
iii

i

∆+++−
∆

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

++     (21) 

 
Backward difference:    

( ) ( )212 34
2

1 xOuuu
xx

u
iii

i

∆++−
∆

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−−     (22) 

 
Similarly a 4-point cluster results in a third order approximation for the forward and 
backward differencing: 
 
Forward difference:    

( ) ( )3211 632
6

1 xOuuuu
xx

u
iiii

i

∆+−−−−
∆

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

++−    (23) 

 
Backward difference:    

( ) ( )3112 236
6

1 xOuuuu
xx

u
iiii

i

∆++++
∆

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+−−    (24) 

 
The above difference equations are used to produce the numerical analogue of the partial 
differential equations describing the flow.  In order to apply this discretization method to 
the whole flow field, many points are placed in the domain to be simulated. Then, at each 
of these points the derivatives of the flow variables are written in the difference form, 
relating the values of the variable at each point to its neighboring points. Once this 
process is applied to all the points in the domain, a set of equations are obtained which 
are solved numerically.  For more discussion on this topic refer to text books on 
numerical analysis such as Hildebrand11,  and Chapra and Canale12.  

3.2 The Finite Element Method  
 
In the finite element method, the fluid domain under consideration is divided into finite 
number of sub-domains, known as elements.  A simple function is assumed for the 
variation of each variable inside each element.  The summation of variation of the 



 12

variable in each element is used to describe the whole flow field.  Consider the two-
nodded element shown in  Figure 5, in which variable u varies linearly inside the 
element. The end points of the element are called the nodes of the element.  For a linear 
variation of u, the first derivative of u with respect to x is simply a constant.  If u is 
assumed to vary linearly inside an element, we cannot define a second derivative for it.  
Since most fluid problems include second derivative, the following technique is designed 
to overcome this problem. First, the partial differential equation is multiplied by an 
unknown function, and then the whole equation can be integrated over the domain in 
which it applies. Finally the terms that need to have the order of their derivatives reduced 
are integrated by parts. This is known as producing a variational formulation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. A two-noded linear element 

 
As an example, we will develop the finite element formulation of the  Laplace's Equation 
in one dimensions:  
 

02

2

=
dx

ud         (25) 

 
where velocity u is a function of the spatial coordinates x. We multiply equation (25) by 
some function W and integrate it over the domain of interest denoted by Ω:  
 

02

2

=Ω⎥
⎦

⎤
⎢
⎣

⎡
∫ d

dx
udW                                                    (26) 

 
Equation (26) can be integrated by parts to result in:  
 

xi+1 xi-1 

ui 

ui+1 

ui-1 

u 

x 



 13

0=Γ⎥⎦
⎤

⎢⎣
⎡+Ω⎥⎦

⎤
⎢⎣
⎡− ∫∫ dn

dx
duWd

dx
du

dx
dW

x                                    (27) 

 
where Γ denotes the boundary of the domain Ω and nx  is  the unit outward normal vector 
to the boundary Γ. The second order derivative in equation (26) is now transformed into 
products of first order derivatives. Equation (27) is used to produce the discrete  form of 
the partial differential equation for the elements in the domain. Equation (27) is known as 
the variational form of the partial differential equation (25). Although this technique 
reduces the order of the derivatives, it introduces the terms corresponding to the boundary 
of the domain into the governing equation (27).   
 
We will now divide the domain into several elements and assume a function for the 
variation of the variable u in each element.  If a two-noded linear element is assumes (see 
Fig. 5),  the variation of u in each element can be represented by 
 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

−+=
−+

−
−+−

11

1
111 )(

ii

ii
iiii xx

xxuuuu       (28) 

or 
 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

+⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
−+

−
+

−+

+
−

11

1
1

11

1
1

ii

ii
i

ii

ii
ii xx

xxu
xx
xxuu      (29)                              

 
The terms in the brackets are called the shape functions and are denoted as Ni’s. ui-1 and 
ui+1 are the nodal values of the variable u and are denoted as ui’s.  Therefore, the variable 
u can be written in the following form 
 

1111 ++−− += iiiii uNuNu                                          (30) 
 

Thus, the shape functions corresponding to the two-nodal linear element, represented by 
equation (28) are 
 

11

1
1

−+

+
− −

−
=

ii

ii
i xx

xxN                                                   (31) 

and 
 

11

1
1

−+

−
+ −

−
=

ii

ii
i xx

xxN                                                   (32) 

 
We can now determine the derivatives of the variable u, using equation (30):  
     

i

m

i

i u
dx

dN
dx
du ∑

=

=
1

        (33) 

 



 14

 
where m is the number of nodes on the element.  Note that ui’s are nodal values of u and 
they are not variables, therefore, they are not differentiated.   
 
In order to solve equation (27) we still need to describe the function W.  There are several 
methods, which are used for the specification of the variable W. However, the most 
common method is the Galerkin method in which W  is assumed to be the same as the 
shape function for each element. Therefore, equation (27) is discretized by using 
equations similar to equation (33) for the derivatives of the variable, and equations 
similar to equations (31) and (32) for W.  For every element there can be several 
equations depending on the number of the nodes in that element. The set of equations 
generated in this form are then solved together to find the solution. 
 
The above formulation was based on a linear variation of the variable in each element. If 
higher order variations are used, e.g., quadratic or cubic, second derivatives will appear 
which require more points to describer them. This makes the computation more 
cumbersome.  References [3] and [4] are recommended for more detailed discussion of 
FEM. 
 
 

3.3 The Finite Volume Method  
 
The finite volume method is currently the most popular method in CFD. The main reason 
is that it can resolve some of the difficulties that the other two methods have. Generally, 
the finite volume method is a special case of finite element, when the function  W is equal 
to 1 everywhere in the domain. This technique is discussed in detail by Patankar.34   
 
A typical finite volume, or cell, is shown in Fig. 6. In this figure the centroid of the 
volume, point P, is the reference point at which we want to discretize the partial 
differential equation.   
 
 
 
 
 
 
 
 
 

Figure 6. A finite volume in one dimension. 

 
The neighboring volumes are denoted as, W, volume to the west side, and E, the volume 
to the east side of the volume P.  For the one-dimensional finite volume shown in Fig. 6, 
the volume with centroid P, has two boundary faces at w and e.  
 

W P E 

w e 



 15

The second derivative of a variable at P can be written as the difference between the 1st   
derivatives of the variable evaluated at the volume faces:  
 

we

we

p xx
x
u

x
u

x
u

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

2

2

                                                  (34) 

 
The first derivatives at the volume faces can be written as to be the differences in the 
values of the variable at the neighboring volume centroids: 
 

PE

PE

e xx
uu

x
u

−
−

=⎥⎦
⎤

⎢⎣
⎡
∂
∂                                                  (35) 

and 
 

WP

WP

w xx
uu

x
u

−
−

=⎥⎦
⎤

⎢⎣
⎡
∂
∂                                                         (36) 

 
 
We can apply this technique to equation (25) to obtain its finite volume formulation. The 
above method is also referred to as the Cell Centered (CC) Method, where the flow 
variables are allocated at the center of the computational cell. The CC variable 
arrangement is the most popular, since it leads to considerably simpler implementations 
than other arrangements. On the other hand, the CC arrangement is more susceptible to 
truncation errors, when the mesh departs from uniform rectangles.  
 
Traditionally the finite volume methods have used regular grids for the efficiency of the 
computations. However, recently, irregular grids have become more popular for 
simulating flows in complex geometries. Obviously, the computational effort is more 
when irregular grids are used, since the algorithm should use a table to lookup the 
geometrical relationships between the volumes or element faces. This involves finding 
data from a disk store of the computer, which increases the computational time.  
  

3.4 Spectral Methods 
 
Another method of generating a numerical analog of a differential equation is by using 
Fourier series or series of Chebyshev polynomials to approximate the unknown functions.  
Such methods are called the Spectral method.  Fourier series or series of Chebyshev 
polynomials are valid throughout the entire computational domain. This is the main 
difference between the spectral method and the FDM and FEM, in which the 
approximations are local. Once the unknowns are replaced with the truncated series, 
certain constraints are used to generate algebraic equations for the coefficients of the 
Fourier or Chebyshev series.   Either weighted residual technique or a technique based on 
forcing the approximate function to coincide with the exact solution at several grid points 



 16

is used as the constraint.  For a detailed discussion of this technique refer to Gottlieb and 
Orzag.13 
 

3.5 Comparison of the Discretization Techniques  
 
The main differences between the above three techniques include the followings. The 
finite difference method and the finite volume method both produce the numerical 
equations at a given point based on the values at neighboring points, whereas the finite 
element method  produces equations for each element independently of all the other 
elements. It is only when the finite element equations are collected together and 
assembled into the global matrices that the    interaction between elements is taken into 
account.  
 
Both FDM and FVM can  apply the fixed-value boundary conditions by inserting the 
values into the solution, but must modify the equations to take account of any derivative 
boundary conditions. However, the finite element method takes care of derivative 
boundary conditions when the element equations are formed and then the fixed values of 
variables must be applied to the global matrices. 
 
One advantage that the finite element method has is that the programs are written to 
create matrices for each element, which are then assembled to form the global equations 
before the whole problem is solved. Finite volume and finite difference programs, on the 
other hand, are written to combine the setting up of the equations and their solution. The 
decoupling of these two phases, in finite element programs, allows the programmer to 
keep the organization of the program very clear and the addition of new element types is 
not a major problem. Adding new cell types to a finite volume program can, however, be 
a major task involving a rewrite of the program and so some finite volume programs can 
exhibit problems if they have multiple cell types.   The differences between the three 
techniques become more pronounced once they are applied to two- and three-dimensional 
problems.  
 
 



 17

4 Solving The Fluid Dynamic Equations  
 
As it was stated in section two,  CFD provides the solution to the governing equations of 
the flow subject to a particular initial and boundary conditions.  Equations (1) to (3) plus 
the equations of the state or the property relations are the general form of the governing 
equations. These equations are highly nonlinear and very difficult to solve even 
numerically.   In applying these equations to a particular problem, some of the terms may 
disappear or be negligible which makes the solution much simpler.  Various numerical 
techniques are developed for each of the particular application of the general flow 
equations and their simplified forms.  In order to introduce various computational 
techniques we will first consider a simple form of the momentum equation, and then 
discretize various forms of that equation. The momentum equation (2) for a 1-
dimensional, incompressible flow with no body force, and constant properties reduces to 
 

x
p

x
u

x
uu

t
u

∂
∂

−
∂
∂

=
∂
∂

+
∂
∂

ρ
ν 1

2

2

       (37) 

 
 
The first term in equation (37) is the transient term, the second is the convective term, the 
third is the diffusive term, and the fourth is the pressure term. We will consider various 
combinations of the terms in this equation and discuss the methods to solve them.  
 

4.1 Transient-Diffusive Terms 
 
Consider only  the 1st and the 3rd terms in the above equation and, to further simplify, 
assume ν=1:   
 

2

2

x
u

t
u

∂
∂

=
∂
∂          (38) 

 
This is the transient diffusion equation which consists of a first derivative in the time 
direction t  and a second derivative in the space direction x. This is a parabolic partial 
differential equation that can be used to model the temporal changes in the diffusion of 
some quantity through a medium. For instance, the transient diffusion of heat 
(conduction) in a solid.  We will solve this equation using both a finite difference and a 
finite element approach.  

4.1.1 Finite Difference Approach 
 
First we will describe the domain of the problem.  Lets assume the diffusion occurs along 
a zone with thickness L.  The time is usually started from t=0 and it is extended in the 
positive direction. Once we have identified the range of this domain, we place points 
throughout this domain.  Figure 7 shows a simple method of placing points in the 



 18

domain. The spacings in the x and t  directions can be the same or they may be different. 
Each point is labeled using i for special discretization and n for temporal discretization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The discretized domain. 

 
This procedure is referred to as the grid generation. Once the grid is generated one of the 
differencing scheme can be used to discretize the governing equation of the problem, 
equation (38).  The type of differencing scheme used depends on the particular problem. 
It is mainly through testing that one may find the accuracy and efficiency of one scheme 
over another. One simple method to discretized  the diffusion equation is to use a forward 
difference formula for the time derivative and a central difference formula for the spatial 
derivative. The discretized equation will then be 
 

2
11

1 2
x

uuu
t

uu n
i

n
i

n
i

n
i

n
i

∆
+−

=
∆
− +−

+

                                  (39) 

 
This can be written in the following form:  
 

n
i

n
i

n
i

n
i u

x
tu

x
tu

x
tu 12212

1 21 +−
+

∆
∆

+⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

−+
∆
∆

=                                     (40) 

 
Note that the velocity at position i and time n+1 depends on the three values at the time 
level n. Thus by knowing the values of u at time level n, its value at the next time level 
n+1 can be calculated.  Therefore,  to start the calculation, values of  u in all the domain, 
e.g. all the x locations, should be known. These known values at t=0  are known as the 
initial conditions.   
 

i-1 i-2 i i+1 i+2 

n+1 

n-2 

n+2 

n 

n-1 

∆t 

∆x 



 19

We can generate other differencing equations. For instance, the left hand side of equation 
(38) can be discretized based on the next time level n+1:  

⎥
⎦

⎤
⎢
⎣

⎡
∆

+−
=

∆
− +

+
++

−
+

2

1
1

11
1

1 2
x

uuu
t

uu n
i

n
i

n
i

n
i

n
i      (41) 

 
 
Equations (40) and (41) define an explicit and implicit form of equations, respectively.   
In  equation (40), an unknown variable is directly related to a set of known variables. 
When a direct computation of the dependent variables can be made in terms of known 
quantities, the computation is said to be explicit.  Some common explicit methods for 
parabolic partial differential equations (e.g., equation 38) are:  
 
(1) The Forward Time/Central Space (FTCS) method which is represented by 

equation (39) and it is stable for ∆t/∆x ≤1/2. 
 
(2) The Richardson method14, where central difference is used for both time and space 

and it is unconditionally unstable with no practical value: 
 
 

⎥
⎦

⎤
⎢
⎣

⎡
∆

+−
+=

∆
− +−

−+

2
11

11 2
2 x

uuu
t
uu n

i
n
i

n
i

n
i

n
i .      (42) 

 
(3) The DuFort-Frankel Method15, which also uses central difference for both time and 

space, but ui
n  in the diffusion term is replace by (ui

n+1 + ui
n-1)/2. This modification 

makes the difference equations unconditionally stable.  
 

⎥
⎦

⎤
⎢
⎣

⎡
∆

+−−
=

∆
− +

−+
−

−+

2
1

11
1

11

2 x
uuuu

t
uu n

i
n
i

n
i

n
i

n
i

n
i .    (43) 

 
The truncation error for DuFort-Frankel method is order of O[(∆t)2, (∆x)2 , (∆t/∆x)2].   In 
equation (43) the only unknown variable is ui

n+1, therefore, it is explicit.  
 
In equation (41), several unknown variables are related to the several known variables. 
This is referred to as an implicit equation.  When the dependent variables are defined by 
coupled sets of equations, and either a matrix or iterative technique is needed to obtain 
the solution, the numerical method is said to be implicit. Some common implicit methods 
for parabolic partial differential equations are:  

 
(1) The Laasonen method16, which is the same as equation (41): 
 

⎥
⎦

⎤
⎢
⎣

⎡
∆

+−
=

∆
− +

+
++

−
+

2

1
1

11
1

1 2
x

uuu
t

uu n
i

n
i

n
i

n
i

n
i .       



 20

This scheme has first-order accuracy with a truncation error of O[∆t, (∆x)2] and is 
unconditionally stable.  

 
(2) The Crank-Nicolson method17 , which is formed by averaging the present and the 
next time differences, i.e., average of equations (39) and (41): 
 

⎥
⎦

⎤
⎢
⎣

⎡
∆

+−
+⎥

⎦

⎤
⎢
⎣

⎡
∆

+−
=

∆
− +−

+
+

++
−

+

2
11

2

1
1

11
1

1 2
2
12

2
1

x
uuu

x
uuu

t
uu n

i
n
i

n
i

n
i

n
i

n
i

n
i

n
i            (44)                    

 
 
(3) The General Formulation, which is obtained by a weighted average of the spatial 
derivatives at two time levels n and n+1: 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
∆

+−
−+⎥

⎦

⎤
⎢
⎣

⎡
∆

+−
=

∆
− +−

+
+

++
−

+

2
11

2

1
1

11
1

1 212
x

uuu
x

uuu
t

uu n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i αα            (45)                    

 
where α and (1 - α) are used to weight the derivatives.  
 
In an explicit scheme, once we know both the initial conditions and the boundary 
conditions, we can calculate the values of the variables at the internal points. Using the 
known values at the first row of points, the values at the next row are found. Then the 
boundary conditions are applied to get the values at the boundary points. This gives us a 
second complete row of points where we know all the values of the variable. These can 
be used as a new set of initial conditions and so the process can be repeated to give the 
next row.  
 
In an implicit scheme in order to calculate both fixed-value boundary conditions and 
derivative boundary conditions extra equations are added to those already generated from 
the partial differential equation. With these extra equations the number of equations 
should match the number of unknowns and so the full set of simultaneous equations can 
be solved.  
 
One final comment should be made about the differencing equations mentioned above, 
namely, the spacings between the points are assumed to be the same. However, one can 
develop a set of difference equations based on variable spacings. In addition, the 
difference equations developed here is based on a line of points, which is a characteristics 
of a Cartesian Coordinates. However, other coordinates can also be used. The finite 
difference method requires, however, that the grid of points is topologically regular. This 
means that the grid must look cuboid in a topological sense. If distributions of points with 
a regular topology are used, then the calculation procedure carried out by a computer 
program is efficient and very fast.  
 
 



 21

4.1.2 Finite Element Approach 
 
We will derive the finite element formulation of equation (38).  It is easier to use a 
difference equation for the time derivative. Therefore, similar to the previous case, if a  
forward difference for the time derivative is used,  equation (38) can be written as  
 
 

2

21

x
u

t
uu nn

∂
∂

=
∆
−+

                                                  (46) 

 
Variational form of equation (46) is produced by first multiplying it by a function W and   
integrating it over the whole domain: 
 
 

Ω⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=Ω⎥
⎦

⎤
⎢
⎣

⎡
∆
−

∫∫
+

d
x
uWd

t
uuW

nn

2

21

      (47) 

 
We now integrate the second derivative on the right hand side by parts to obtain:   
 
 

∫∫∫ Γ⎥⎦
⎤

⎢⎣
⎡

∂
∂

+Ω⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂

−=Ω⎥
⎦

⎤
⎢
⎣

⎡
∆
−+

dn
x
uWd

x
u

x
Wd

t
uuW x

nn 1

   (48) 

 
 
Note that the continuity requirement for u is reduced from second to first derivatives, 
therefore, we say it is weakened. We will now divide the domain into a series of  linear 
elements and use the Galerkin3 method to derive the finite element formulation. On each 
element the variation of u is described by:  
 

i

m

i
iuNu ∑

=

=
1

        (49) 

where m is the number of nodes on the element and the Ni terms are the shape functions. 
After substituting for the multiplier W, for the values of u at the two time levels and for 
the spatial derivatives of u at the n'th time level, an explicit form of equation (49) is 
obtained:  
 
 

Γ⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+Ω⎥

⎦

⎤
⎢
⎣

⎡ ∂

∂
∂

−=Ω⎥
⎦

⎤
⎢
⎣

⎡

∆

−
∫∫∫

+

dn
x

u
Wd

x
uN

x
Nd

t
uNuN

N x

n
j

n
jji

n
jj

n
jj

i δ

1

   (50) 

 
 
where the i,j indices refer to the summation. In many problems the boundary term is not 
discretized. Usually, this so-called flux can be taken to be a known value that needs to be 



 22

added later. On the faces of most elements the flux term is ignored, as we assume that the 
fluxes cancel out across those faces that are internal to the domain. This is an equilibrium 
condition. It is only on the boundaries of the domain that the flux terms need to be added. 
If the fluxes are not added, they will be calculated by the method as being zero, and 
because of this they are known as natural boundary conditions. If we specify the value of 
u at a boundary then the flux term is not required, just as with the finite difference 
method, and this is known as an essential boundary condition.  
 
For simple elements the shape functions Ni  are simple functions of the coordinates, say x, 
and so equation (50) can be integrated exactly over each element, but for more complex 
elements this integration has to be performed numerically. If we use simple one-
dimensional elements that have two nodes, then the above equation can be integrated to 
yield two separate equations for each element in terms of the nodal values of u at the 
n+1'th time level, if the values at time level n are known. This equation can be expressed 
as a matrix equation as follows: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

2

1
1

2

1
1

2221

1211

f
f

u

u
aa
aa

n

n

       (51) 

 
where the terms aij are functions of position derived from the integration of the first term 
on the left hand side of equation (50), and the terms fi come from all the other terms in 
equation (50). This matrix equation is, in fact, part of a larger matrix equation for all the 
unknown values of u. Once all the equations for each element, the so-called element 
equations, are known then the full set of equations for the whole problem has to be 
produced. This is shown in Fig. 8 where two elements are shown.  An expanded version 
of the element equations can be formed by relating the local node on an element to its 
global node number. For example, on element 2 the local node numbered 1 is global node 
number 2. Combining the two expanded equations produces a global matrix equation, and 
the process of combination is known as assembling the equations. This is done by adding 
all the element equations together as follows:  
 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

+

+

0000
0
0

2

1

1
3

1
2

1
1

2221

1211

f
f

u

u

u

aa
aa

n

n

n

      (52) 

 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

+

+

2

1
1

3

1
2

1
1

2221

1211

0

0
0

000

g
g

u

u

u

bb
bb

n

n

n

      (53) 

 
This gives: 
 



 23

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

+

+

+

2

12

1

1
3

1
2

1
1

2221

12112221

1211

0

0

g
gf

f

u

u

u

bb
bbaa

aa

n

n

n

     (54) 

 
where terms fi  and gi come from the terms on the right side of equation (50). The matrix 
on the left hand side is called the stiffness matrix and the matrix on the right hand side is 
called  the load vector.  
 
Once these global matrices have been created, the fixed value boundary conditions are 
imposed on the matrices and the equations can be solved. Again the solution of the 
original partial differential equation (38) has been reduced to the solution of a set of 
simultaneous equations. Finite elements produce the numerical equations for each 
element from data at known points on the element and nowhere else. Consequently, there 
is no restriction on how the elements are connected so long as the faces of neighboring 
elements are aligned correctly. By this we mean that the faces between elements should 
have the same nodes for each of the adjoining elements. This flexibility of element 
placement allows a group of elements to model very complex geometry. 
 
 
 
                           
 
 

 
(a)  Single Element 

 
 
 
 

 
                           
 
 

 
 
 

(b) Two Elements 
 

Figure 8. Numbering of Two-Nodded Linear Elements 

 
 
 

Element 1 Element 2 

Local node 1 Local node 1 
and node 2 

Local node 2 

Global node 1 Global node 2 Global node 3 

Element 1 

Local node 1 Local node 2 



 24

4.2 Transient-Convective Terms 
 
By considering the 1st and the 2nd terms in equation (37) we obtain the main parts of the 
equation representing the inviscid flows. If we further assume that the velocity u in the 
convection term is a constant (we differ the discussion of the nonlinear terms to the next 
section), we obtain the wave equation. Thus, the first order wave equation becomes: 
 

0=
∂
∂

+
∂
∂

x
uc

t
u          (55) 

 
where c is the wave speed propagating in the x-direction. For an initial condition given by  
 

 )()0,( xfxu =          (56) 
 
where f(x) is monotonic in x, the exact solution for a wave of constant shape is 
 

)( ctxfu −=          (57) 
 
(1) Euler Explicit Method: An explicit differencing of equation (55) results in the 
following formulation: 
 

01
1

=
∆
−

+
∆
− +

+

x
uuc

t
uu n

i
n
i

n
i

n
i         (58) 

 
This is an explicit equation since only one unknown, ui

n+1 , appears in the equation. This 
method is refereed to as Euler Explicit Method and, unfortunately, it is unconditionally 
unstable and will not work for solving the wave equation. This method is first-order since 
the lowest-order term in the truncation error is first order, i.e., ∆t, and ∆x.   
 
(2) First-Order Upwind Method: The Euler method can be made stable by using a 
backward difference instead of a forward difference for a positive wave speed1: 
 

01
1

=
∆
−

+
∆
− −

+

x
uuc

t
uu n

i
n
i

n
i

n
i        (59) 

 
This method is stable for  0 ≤ c∆t/∆x ≤ 1,  where c∆t/∆x is referred to as the CFL 
(Courant-Friedrichs-Lewy) number. This method is referred to as the First-Order 
Upwind Method.  
 
For discretized transport problems, the CFL   number determines how many mesh cells, a 
fluid element passes during a timestep. For compressible flow, the definition is    
different. Here, the CFL number determines how many cells are passed by a propagating    

                                                           
1 For a negative wave speed, forward difference must be used. 
 



 25

perturbation. Hence, the wave-speed, i.e., fluid speed plus the sound speed, is employed.    
For explicit time-stepping schemes, such as Runge-Kutta, the CFL number must be less 
than  the stability limit for the actual scheme to converge. For implicit and semi-implicit    
schemes, the CFL limit does not constitute a stability limit. On the other hand, the range 
of parameters in which these schemes converge may often be characterized by the CFL    
number. 
 
(3) Lax Method: Another method of making the Euler equation stable is by using an 
average value for ui

n based on the two neighboring points:  
 

0
2

2/)( 1111
1

=
∆
−

+
∆
+− −+−+

+

x
uu

c
t

uuu n
i

n
i

n
i

n
i

n
i      (60) 

 
This is referred to the Lax Method18 which is stable for CFL ≤ 1.  
 
(4) Euler Implict Methods are another way of solving Euler equation: 
 

  0
2

1
1

1
1

1

=
∆
−

+
∆
− +

−
+
+

+

x
uu

c
t

uu n
i

n
i

n
i

n
i        (61) 

 
These methods are unconditionally stable for all time steps, however, a system of 
equations must be solved for each time level.   
 
The above methods are all first-order accurate.  More accurate second-order methods are 
developed to solve the PDEs describing the flow. The commonly used methods are: 
 
(5) Leap Frog Method 

0
22

1
1

1
1

11

=
∆
−

+
∆
− +

−
+
+

−+

x
uu

c
t
uu n

i
n
i

n
i

n
i      (62) 

 
(6) Lax-Wendroff Method19 

 

( )n
i

n
i

n
i

n
i

n
i

n
i

n
i uuu

x
tc

x
uu

c
t

uu
112

211
1

2
)(22 −+

−+
+

+−
∆
∆

=
∆
−

+
∆
−

   (63) 

(7) MacCormack Method20 
 
This is an explicit, predictor-corrector method which is written in the following form. 
 

Predictor:  )()( 1
1 n

i
n
i

n
i

n
i uu

x
tcuu −

∆
∆

−= +
∗+      (64) 

 

Corrector:  [ ]
⎭
⎬
⎫

⎩
⎨
⎧ −

∆
∆

−+= ∗+
−

∗+∗++ )()()(
2
1 1

1
111 n

i
n
i

n
i

n
i

n
i uu

x
tcuuu    (65) 



 26

 
Here, ∗+ )( 1n

iu  is the predicted value for u at point i and  time level n+1. The forward and 
backward differencing used in the above equations can be changed depending on the 
particular problem.  
 
(8)  Second-Order Upwind Method 
 
This is a modification of the MacCormack method where upwind (backward) differences 
are used in both predictor and corrector. 
 

Predictor:  )()( 1
1 n

i
n
i

n
i

n
i uu

x
tcuu −

∗+ −
∆
∆

−=      (66) 

 

Corrector:  [ ] ( )
⎭
⎬
⎫

⎩
⎨
⎧ +−

∆
∆

−−
∆
∆

−+= −−
∗+

−
∗+∗++ n

i
n
i

n
i

n
i

n
i

n
i

n
i

n
i uuu

x
tcuu

x
tcuuu 21

1
1

111 2)()()(
2
1

 (67) 
 
The fluid dynamics of inviscid flows are governed by Euler equations. These equations 
may have different character for various flow regimes. For time-dependent flows, the 
equations are hyperbolic for all Mach numbers.  Therefore, a time-marching method can 
be used to obtain the solution. In steady inviscid flows, the Euler equations are elliptic for 
subsonic conditions, and hyperbolic for supersonic conditions.  Several simplified form 
of the Euler equations are used for inviscid flows. For instance, if the flow is 
incompressible, by consider the flow is irrotational as well; a solution to the Laplace’s 
equation for the velocity potential or stream function can describe the flow field. The 
traditional method of solving hyperbolic PDEs are by the method of characteristics. 
Alternatively, there are numerous FDM based solution schemes for such flows.  
 

4.3 Shock Capturing Methods 
 
For flows with shocks, several shock-capturing techniques are developed. Gudonov21 

schemes have been particularly efficient for shock problems. Godunov supposed that the 
initial data could be replaced by a set of piecewise constant data with discontinuities and 
used exact solutions of Riemann problems to advance the piecewise constant data. One of 
the key points in Godunov schemes is to calculate the flux at each interface of numerical 
cells through a Riemann problem. A major extension to the Godunov’s scheme was made 
by Van Leer22,23 in his MUSCL scheme (Monotone Upstream-centered Scheme for 
Conservation Laws) which used a Riemann solver to advance piecewise linear data. 
Other examples of Godunov schemes include Roe’s method24,25, the piecewise parabolic 
method (PPM)26, the TVD (Total Variation Diminishing) methods27.  
 
Godunov schemes for hydrodynamical equations may be second-order accurate in time, 
but they are explicit. The time step in an explicit scheme is restricted by the largest CFL 
number, which may not be larger than unity for a stable calculation. The stability limit in 



 27

an explicit scheme is imposed by the local conditions in the regions, where wave speeds 
are high, regardless of the significance of spatial variations prevailing in the problems. 
The regions drastically reduce the time step possible from explicit schemes. Implicit 
schemes for hydrodynamical equations are favored over their explicit counterparts for 
some problems, in which the time-step size necessary for procuring a required temporal 
accuracy may be significantly larger than that dictated by the explicit stability condition. 
Implicit–explicit hybrid schemes are useful when a flow attains different wave speeds 
either in different regions or at different instants, and the time accuracy is important in 
some parts of simulation domains.  
 
Hybrid implicit-explicit schemes have also been developed, which use a combination of 
both schemes.  The difference approximation in time is either implicit or explicit, 
separately for each family of characteristics and for each cell in the finite difference grid, 
depending on whether the local CFL number for that family is greater than or less than 
one. To the extent possible, the hybridization is continuous at CFL number equal to one, 
and the scheme for the explicit modes is a second-order Godunov method of a type 
discussed by Colella.28,29 
 

4.4 Convective-Diffusive Terms   
 
Consider the convective term (2nd term) and the diffusive term (3rd term) in equation (37).  
 

  2

2

x
uv

x
uu

∂
∂

=
∂
∂          (68) 

 
The first term contains a nonlinearity due to the convective term. These factors increase 
the complexity of the solution.  The nonlinearity of the equations will make the iteration 
procedure very complex. Therefore, the equations are linearized at each time step.  
Linearization is achieved by using the current value of the velocity at a point or in a 
volume or element as the velocity multiplier. For example, the convective term (1st term) 
can be written as 

⎥⎦
⎤

⎢⎣
⎡

∆
− −+

x
uuu ii

2
11         (69) 

 
where a  central difference is used for the derivative and ū  is found from the current 
solution for u:   ū  =  ui

n.  This linearization technique is conducted on all the nonlinear 
terms in the equations before solving the set of simultaneous equations. The solution 
procedure for this type of equations is shown in Figure 9.  As shown in this figure, there 
are several levels of iteration before a solution is obtained.  
 
One other problem that needs to be addressed is that of producing numerical forms of the 
convection operator. Problems occur when this operator is discretized using central 
differences for the first derivative of the velocity. For example, take the linearized form 
of the equation (68): 



 28

 

2

2

x
uv

x
uu

∂
∂

=
∂
∂         (70) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Solution procedure for a nonlinear set of equations.  
 
Using central differences for both the first and second derivatives in this equation gives  
 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∆

+−
=⎥

⎦

⎤
⎢
⎣

⎡
∆

− −+−+
2

111,1

)(
2

2 x
uuu

v
x
uu

u jijijijiji                               (71) 

 
which can be rearranged to give  
 

Start 

Finding the Solution to  the Linearized 
Equations 

Solution at time level n+1 

Solution at time level n

yes 

yes 

no 

no 

Stop 

Convergence 

Final time 
level



 29

⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ −= −− 2

Re1
2
1

2
Re1

2
1

,1,1, jijiji uuu      (72) 

 
where Re is the Cell Reynolds number, given by 
 
 

v
xu∆

=Re           (73) 

 
The value of the cell Reynolds number has an important effect on the numerical equation. 
When the Reynolds number is less than two both terms on the right hand side have 
positive coefficients but when the Reynolds number is greater than two the first term on 
the right hand side becomes negative. This negative term result in very poor results. 
Therefore, a restriction is put on the cell Reynolds number. In a two-dimensional 
problem, each mesh cell has one cell Reynolds number for each of its directions, defined 
by the cell dimension and the flow speed in that direction.  
 
One way around this limitation is to use a first-order accurate difference equation to 
model the first derivative in equation (70) instead of the second-order accurate difference 
equation used above. However, the reduction in accuracy can lead to a poor solution. 
Typically the use of lower-order accuracy schemes gives results, which are the results for 
a flow which has more viscosity than the one we are trying to model.  Such schemes are 
in common use together with more accurate schemes. A good review of this topic is 
given by Abbott and Basco30. The following options for the discretization of the 
convection operator.  
 
(1) Upwind Schemes: 

 
In an upwind (UW) scheme the convection term is formed using a first-order accurate 
difference equation equating the velocity derivative to the values at the reference point 
and its nearest neighbor taken in the upstream direction. This can give very inaccurate 
solutions but they are easy to obtain as they converge readily. For compressible flows, 
UW is viewed in a different light. Here, instead of the primitive variables, a set of 
characteristic variables is often used. The governing equations for the characteristic 
variables are locally hyperbolic. Hence, their solutions are    wavelike and upwind 
differences are the correct treatment. UW here appears under designations such as flux 
splitting, flux difference splitting, fluctuation splitting etc. 
 
(2) Hybrid Schemes: 

 
A hybrid scheme, where the upwind scheme is used if the Reynolds number is greater 
than two, and  central differences are used if the Reynolds number is two or less. This is 
more accurate than the  upwind scheme but does not converge on some grids of points.  
 
 
 



 30

(3) QUICK Upwind Schemes: 
 
The quadratic upstream interpolation for convective kinetics (QUICK) scheme31 is a 
quadratic upwind scheme used mainly in the finite volume formulation and is more 
accurate than the two schemes described above.  This scheme uses a three-point 
upstream-weighted quadratic interpolation for cell face values. In the QUICK scheme, 
one adds one point in each direction and calculates the derivative using the cubic 
polynomial drawn through the four involved points. Local truncation error analysis shows 
third order accuracy. The QUICK scheme is unconditionally bounded up to cell Reynold 
numbers of 5. Beyond this limit, it may become unbounded. The QUICK scheme is 
normally applied as a correction to the donor cell scheme. In situations with 
unboundedness, the correction may locally be limited, thus reverting to the donor cell 
scheme. The QUICK scheme has a somewhat different form in finite volume contexts, 
since here the differences rather than the derivatives are of interest. 
 
(4) Power-Law Schemes: Power-law schemes are derivatives of QUICK but are more 
accurate.  
 

4.5  Incompressible Navier-Stokes Equations 
 
When considering all the terms in equation (37) a special difficulty arises due to the weak 
coupling of the velocity and pressure fields. For the incompressible fluids, the continuity 
equation is only function of velocity and not a function of pressure. Only the momentum 
equations contain pressure terms. Since most of the terms in the momentum equations are 
functions of the velocity components it is natural to use these equations to produce the 
solutions for the velocity components. Then, the problem is how to obtain the pressure 
solution, since continuity does not contain pressure. A direct method is to discretize all 
the equations, i.e., continuity and momentum, and solve them simultaneously. This 
results in a very large solution vector that contains all variables and consequently very 
large computational effort. There are two commonly used methods to resolve this 
problem: (1) pressure-based methods, and (2) methods based on the concept of artificial 
compressibility (also known as pseudo-compressibility).  
 

4.5.1 Pressure-Based Methods 
 
In the pressure-based method (PBM),32,33,34 (also known as pressure correction, 
uncoupled, or segregated methods) a Poisson equation for pressure corrections is 
formulated, and then it is updated for the pressure and velocity fields until a divergence-
free velocity field is obtained.  There are numerous variety of this method, some of the 
more popular ones are the marker-and-cell (MAC) method35, SIMPLE and SIMPLER 
methods34, the fractional-step method36, and the pressure-implicit with splitting of 
operators (PISO) method37,38.  
 



 31

Here we will only discuss the SIMPLE (Semi-Implicit Pressure Linked Equations) 
algorithm which is one of the most common algorithms for the incompressible flow 
calculations. This method is based on first guessing and then correcting the flow variables 
in an iterative manner to obtain the solution. The velocity components are first calculated 
from the momentum equations using a guessed pressure field. The pressure and velocities 
are then corrected in order to satisfy the continuity. The procedure is repeated until 
convergence is achieved. (PISO method is somewhat similar to SIMPLE method, except 
that it involves one predictor step and two corrector steps.) 
 
For instance, in a two-dimensional problem, the momentum equation in the x-direction is 
solved for u velocity component (i.e., velocity in the x-direction) and the momentum 
equation in y-direction is solved for v velocity component using the lagged pressure 
terms. Therefore, the velocity components are first obtained without using the continuity 
equation. The velocity components determined this way will not satisfy the continuity 
equation initially. However, a modified form of the continuity equation is developed 
which is used to solve for the pressure equation and it is iterated until the velocity 
components converge to values which satisfy the continuity equation. In this method the 
velocity and pressure are written in the following form:  
 

u = u* + u’ 
 
  v = v* + v’              (74) 
 

p = p* + p’ 
 
where  u, v, and p are the actual velocity components and pressure, u*, v*, and p* are the 
guessed or the intermediate values, and u’, v’, and p’ are the corrections for the velocity 
components and pressure.   After substitution in the continuity equation:  
 

0=
∂
∂

+
∂
∂

y
v

x
u                                               (75) 

 
we obtain 
 

y
v

x
u

y
v

x
u

∂
∂

−
∂
∂

−=
∂
∂

+
∂
∂ **''               (76) 

 
In this equation the derivatives of the correction velocity components depend on the 
derivatives of the velocity components that satisfy the momentum equations. An 
approximate form of the momentum equation (6) is used to relate the pressure correction 
to the velocity corrections. In order to obtain this approximate form, we start with the 
momentum equations: 
                                          

   jj BpAu =          (77) 
and 



 32

    
jj DpCv =                                           (78) 

 
where A, B, C and D are matrices, and uj, vj and pj  are vectors of the variables at grid 
points or nodes. These equations can be rewritten if the variables are split using equation 
(74), to give  
 

'' **
jjjj BpBpAuAu +=+       (79) 

and    
   '' **

jjjj DpDpCvCv +=+                                            (80) 
 
Since in each step of calculation we are solving for the estimated values or the 
intermediate values, then 
            

**
jj BpAu =                             

and 
    **

jj DpCv =                                               
 
Therefore, these terms  can be subtracted from the matrix equations (79) and (80) giving  
 

'' jj BpAu =           
and 

'' jj DpCv =           
 
These are the approximate forms of the momentum equation and can be written as  
 

'' 1
jj BpAu −=         (81) 

and 
'' 1

jj DpCv −=                                          (82) 
 
Using these two forms of the equations we can find the pressure from the continuity 
equation. This is done by substituting them into the modified continuity equation (76), to 
produce an equation for the correction pressure pj’ which has on its right hand side the 
imbalance in the continuity of the flow after the momentum equations have been solved. 
Once the correction pressure p’ has been found, so u’ and v’ can be formed using 
equations (81) and (82). Finally equations (74) are used to find the corrected velocity 
components and pressure. At this stage in the solution the velocity components satisfy the 
continuity equation and a new value of pressure has been calculated, but the velocity 
components do not satisfy the momentum equations. To resolve both the solution of the 
momentum equations and the non-linearity, the momentum equations are used again to 
produce further simultaneous equations, which are solved, followed by the calculation of 
the correction pressure and the correction velocities.  
 



 33

In the momentum equation (6) the pressure variable appear in a first-order spatial 
derivative. The conversion of these derivatives to numerical form can lead to problems, 
as the use of central differences can produce values for the pressure variable at a given 
point which are not related to the pressure variables at neighbouring points. This, in turn, 
can lead to a pressure solution oscillating in what is known as a chequerboard pattern. 
Two different grid arrangements have been used to overcome this problem: (i) staggered 
grids39  with different control volumes for velocities and pressure and (ii) collocated 
grids40 with the same control volume for all variables. In the staggered grids, effectively, 
the pressure is stored at the centroid of a volume and the velocity components are stored 
at the volume faces34. However, the use of staggered grids introduces significant 
complexities in code development, increases the number of storage allocations, and 
requires intense interpolations. More recently several programs have turned to storing all 
the variables at volume centroids using the transformation of Rhie and Chow40  to prevent 
chequerboarding. These collocated grids are becoming more popular.41,42,43  
 



 34

 

5 Basic Solution Techniques  
 
In the implicit set of equations each equation has several unknowns, therefore, they 
should be solved simultaneously. There are many different methods for solving such a set 
of  equations. Here, we will describe only the general procedure for solving a set of 
equations simultaneously.   
 

5.1 Direct Method 
 
Consider the matrix  equation  
 

Au=b                                              (83) 
 
where vector u represents the unknown variables, A is an operator on the vector of 
variables u, and b is a vector of known values. The solution to the above equation is 
written as follows:  
 

          u=A-1b                              (84) 
 
where A-1  is the inverse of the matrix A.  The general method for determining the inverse 
of matrix A is referred to as LU decomposition3. In this method the matrix A is described 
by two other matrices as follows:  
 

A=LU                                        (85) 
 
where  L is a lower triangular matrix and U is an upper triangular matrix. The inverse can 
be easily found once matrix  A is  decomposed into  L and  U. This is referred to as the 
direct method. Direct methods are commonly used in the finite element methods. 
However, the problem associated with the direct methods is that it requires significant 
amount of computational times for large matrices. Many iterative methods are developed 
to resolve this problem and reduce the computational effort.   
 

5.2 Iterative Methods 
 
As the name suggests, iterative methods obtain the solution by iteratively guessing the 
solution until the correct one is found. In addition, in computational fluid dynamics, the 
governing equations are nonlinear and the number of unknown variables is typically very 
large. Under these conditions implicitly formulated equations are almost always solved 
using iterative techniques. Iterations are used to advance a solution through a sequence of 
steps from a starting state to a final, converged state. This is true whether the solution 
sought is either one step in a transient problem or a final steady-state result. In either 
case, the iteration steps resemble a time-like process. Of course, the iteration steps 



 35

usually do not correspond to a realistic time-dependent behavior. In fact, it is this aspect 
of an implicit method that makes it attractive for steady-state computations, because the 
number of iterations required for a solution is often much smaller than the number of 
time steps needed for an accurate transient that asymptotically approaches steady 
conditions. 
 
Various iterative schemes are designed and used in the numerical analysis.3,4 We will 
introduce the more commonly used ones in CFD applications. Consider a system of three 
equations as:  
 

1313212111 buauaua =++  

2323222121 buauaua =++                (86) 

3333232131 buauaua =++   
 

5.2.1 Jacobi and Gauss-Seidel methods.  
 
In these two methods equations (86) are rewritten as: 
 
 

[ ]3132121
11

1
1 uauab

a
u −−=     

[ ]3231212
22

2
1 uauab

a
u −−=       (87) 

[ ]2321313
33

3
1 uauab

a
u −−=  

 
Note that this method can only work if in equation (87) the diagonal terms of matrix A, 
i.e., the terms aii, are not zero. The Jacobi method takes the right hand side of equation 
(87) to be the known values at the k’th iteration and the left hand side to be the new 
values at the k+1’th iteration: 
 

[ ]kkk uauab
a

u 3132121
11

1
1

1
−−=+  

 

[ ]kkk uauab
a

u 3231212
22

1
2

1
−−=+      (88) 

 

[ ]kkk uauab
a

u 2321313
33

1
3

1
−−=+  

 
 



 36

The Gauss-Seidel method uses the new values at the k+1’th iteration on the right hand 
side of the equations giving:  
 
     

[ ]kkk uauab
a

u 3132121
11

1
1

1
−−=+  

[ ]kkk uauab
a

u 323
1

1212
22

1
2

1
−−= ++      (89) 

[ ]1
232

1
1313

33

1
3

1 +++ −−= kkk uauab
a

u  

 
Both of these methods require that an initial guess to the solution be made which can then 
be used during the first iteration. Then the numerical equations are used to produce a 
more accurate approximation to the numerically correct solution, which is one in which 
all the variables satisfy the governing equations. This new approximation, the updated 
solution, is then used as the new starting solution and the process is repeated until the 
error in the solution is sufficiently small. Each repetition of the solution process is known 
as an iteration.  
 
Sometimes during an iterative process the updated solution at the end of one iteration can 
be very different from the solution at the start of the iteration. If we consider Fig. 10 we 
can see a graph of velocity against time. Let us imagine that we have a numerical scheme 
that predicts the velocity uk+1 at some time ∆t ahead of the current time by using values of 
the current acceleration ak and the current velocity uk  in the following way:  
 

k
kk

a
t

uu
=

∆
−+1

                                            (90) 

or  
tauu kkk ∆+=+1                                                (91) 

 
This is a first-order method in time. If we know both the acceleration, ak, and velocity, uk, 
then we can predict the new velocity, and so given the new acceleration and velocity we 
can march forward in time finding the velocity-time relationship. Looking at the figure 
we can see the actual velocity-time relationship and two approximations bases on the 
above equations. In both of these the initial acceleration is used to predict the velocity. It 
is clear from this that if the time interval is small, say ∆t1, then the error  ε1  between the 
predicted velocity and the actual velocity is small, but if the time interval ∆t2  is large 
then the error ε2  is large. Similar errors can occur when carrying out a CFD simulation 
and if the error gets ever larger during the solution we will have a very inaccurate flow 
solution and convergence of the solution will not be achieved. In order to see whether 
such inaccuracies occur, we need a measure of the error of the solution.  
 
There are several other parameter that can be used to control the convergence of the 
solution. These are: (i)  the number of time steps to run; (ii) the number of iterations 



 37

within each time for solving the non-linearity of the problem; (iii) the number of internal 
iterations required in solving the simultaneous equations; and (iv) limits on the residual 
errors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. The influence of the time step on the solution.  
 

5.2.2 Relaxation methods.  
 
One method to accelerate the iteration process is by using a relaxation factor.  At each 
point in the iteration process a finite error is resulted since the guess is not the exact 
solution.  For instance, in equation (83) the so called “residual error” at each iteration 
step can be written as: 
          

    r = b - Au                                  (92) 
 
As the solution process progresses from iteration to iteration, the residual errors from 
each equation should reduce. If they do reduce then the solution is said to be converging. 
If the residuals become ever larger, then the process is said to be diverging. This process 
can be accelerated in various ways. If the solution scheme is time dependent or quasi-
time dependent then the solution at the end of each time step needs to be converged 
before moving to the next time step. This can mean controlling several iteration 

Time 

Actual 

Initial slope 

ε2 

ε1 

∆t2 

∆t1 

u 



 38

procedures. One iterative procedure might solve the simultaneous equations generated by 
linearizing the partial differential equations, the second iterative procedure finds a 
solution at one time step and accounts for the non-linearity of the problem and a final 
iteration procedure, if required, moves the solution through the different time levels. All 
of these iteration processes need to be controlled.  
 
A common method is known as the successive over-relaxation (SOR) method44. To do 
this we take the equations of the Gauss-Seidel method (equation 87) and both add and 
then subtract the terms ui

k  to the right hand side:  
 

 
 

[ ]⎥
⎦

⎤
⎢
⎣

⎡
−−−+=+ kkkkk uauauab

a
uu 3132121111

11
1

1
1

1  

[ ]⎥
⎦

⎤
⎢
⎣

⎡
−−−+= ++ kkkkk uauauab

a
uu 323222

1
1212

22
2

1
2

1    (93) 

 

[ ]⎥
⎦

⎤
⎢
⎣

⎡
−−−+= ++− kkkkk uauauab

a
uu 333

1
232

1
1313

33
3

1
3

1  

 
The terms in the brackets represent the residuals. We can multiply the residual by a factor 
ω in order to accelerate the iteration process:  
 
 

 

[ ]⎥
⎦

⎤
⎢
⎣

⎡
−−−+=+ kkkkk uauauab

a
uu 3132121111

11
1

1
1

ω  

   

[ ]⎥
⎦

⎤
⎢
⎣

⎡
−−−+= ++ kkkkk uauauab

a
uu 323222

1
1212

22
2

1
2

ω     (94) 

 

[ ]⎥
⎦

⎤
⎢
⎣

⎡
−−−+= ++− kkkkk uauauab

a
uu 333

1
232

1
1313

33
3

1
3

ω  

 
The factor ω is called the relaxation factor and, for most systems, it is set between one 
and two.  If ω is unity the method becomes the original Gauss-Seidel method. The proper 
selection of the relaxation factor depends on the particular problem under consideration 
and it is generally obtained by trial-and-error.   
 

5.2.3 ADI Method: 
 



 39

One of the problems associated with two-dimensional problems is that the matrix formed 
by the difference equations may not be tridiagonal. This is the case for all the implicit 
schemes mentioned earlier. One way to resolve this problem is by using the Alternating 
Direction Implicit (ADI) method.45,46,47 In this method the operator A  is split in parts. For 
a two-dimensional flow, one part includes only x-derivatives, and another part includes 
only y-derivatives:  AxAy. The mixed derivative terms are moved to the right-hand side of 
the equations. In this way, both Ax and Ay are tridiagonal matrices and therefore, the split-
operator system can be solved in a non-iterative, or implicit manner as a sequence of two 
simple systems of equations. This method will converge if  AxAy  is  approximately equal 
to A=Ax+Ay.  
 
 

5.3 Convergence and Stability 
 
The numerical solution is said to converge if it tends to the analytical solution as the grid 
spacing or element size reduces to zero.  However, for most problems we do not have an 
analytical solution. Therefore, practically, a numerical solution is said to converge if the 
values of the variables at the points in the domain tend to move towards some fixed value 
as the solution progresses. Also, the numerical solution procedure is said to be stable if 
the errors in the discrete solution do not increase so much that the results are not realistic 
anymore.  
 
Numerical stability has to do with the behavior of the solution as the time-step ∆t is 
increased. If the solution remains well behaved for arbitrarily large values of the time 
step, the method is said to be unconditionally stable. This situation never occurs with 
explicit methods, which are always conditionally stable. It is easy to see that this is so by 
dividing the u-equation by ∆t and then letting ∆t approach infinity. In this limit there are 
no n+1 terms remaining in the equation so no solution exists for un+1, indicating that 
there must be some limit on the size of the time step for there to be a solution. In an 
implicit formulation, a solution for the unknowns at level n+1 may be obtained for any 
size time step. Of course, the solution for very large times may not be realistic unless the 
implicit formulation has been carefully constructed.  Numerous methods have been 
developed to test the stability of the numerical method. Among these, von Neumannn’s 
method, the matrix method5  the discrete perturbation analysis method,  and Hirt’s48 
method are the more common methods.  
 

5.4 Von Neuman Stability Analysis 
 
Consider the one-dimensional transient diffusion equation (Eqn. 38) in which the time 
derivative is descretized by forward difference scheme and the diffusion term by central 
difference in space and explicit in time (Eqn. 39). Let u* signify the numerical solution to 
the finite difference equation; i.e., 
 



 40

2
11

1 **2***
x

uuu
t

uu n
i

n
i

n
i

n
i

n
i

∆
+−

=
∆
− +−

+

 

Let us assume that the (round off) error between the numerical solution u*  and the exact 
solution to the finite-difference equation, u, is ε, i.e., 
 
 

ε=−uu *  
 
Since both u and u* satisfy Eqn. 39, so does the error: 
 

2
11

1 2
xt

n
i

n
i

n
i

n
i

n
i

∆
+−

=
∆
− +−

+ εεεεε
        (95) 

 
If εI decreases as the solution is progressed in time, then the solution is stable. In other 
words, for stability, we need to have the following conditions: 
 

1/1 ≤+ n
i

n
i εε  

 
Considering that the solution to the transient diffusion is often exponential in time and its 
spatial dependence is in the form of a Fourier series, it is reasonable to assume that the 
error has a similar dependence on time and space, hence: 
 

∑=
l

xjkt leeαε  

where kl is the wave number, 1−=j  and α can be a real or a complex number. For the 
stability condition to be satisfied, it is sufficient that each term in the above series satisfy 
the stability condition, i.e., 
 

11
)(

≤⇒≤ ∆
∆+

t
xjkt

xjktt

e
ee

ee
il

il
α

α

α

 

 
Substituting one term of the above series in (95)  and rearranging, yields: 

 

2)(
21
x

ee
t

e xjkxjkt ll

∆
+−

=
∆
− ∆∆−∆α

 

But, 
 

θθθ sincos je j +=  
 
Hence; 

2

2

2 )(
)2/1(sin4

)(
1)cos(

21
x

xk
x

xk
t

e ll
t

∆
∆

−=
∆

−∆
=

∆
−∆α

 



 41

and, 

Gxk
x

te l
t ≡∆

∆
∆

−=∆ ]2/1[sin
)(

41 2
2

α  

 
where G is referred to as the amplification factor. For a stable solution, the magnitude of 
G should be less than unity; 
 

11 <<− G  
 

which results in the following stability conditions: 
 

2
1

)( 2 ≤
∆
∆
x
t  

 
Application of the Von Neuman stability analysis to Eqn. 58 (or Eqn. 59) will result in 
the Courant-Friedrichs-Lewy stability criterion, i.e., 
 

1≤
∆
∆

=
x
tcCFL  

 
Hence for stable solution of the wave equation, the time-step should be, 
 

cxt /∆≤∆  
 

5.5 Convergence of Jacobi and Gauss-Seidel Methods (iterative 
methods): 

 
There are several methods to predict the convergence of the Jacobi and Gauss-Seidel 
methods. These are discussed below. 
 
Let us consider Eqn. 83: 
 

bAu =  
 

The coefficient matrix A can be split into three parts, B, T, and D, which contains only 
the diagonal elements, i.e., 
 

TDBA ++=  
 
For example, for the system of Eqns. 86, B, T, and D are: 
 



 42

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

000
00

0
;

00
00
00

;
0
00
000

23

1312

33

22

11

3231

21 a
aa

T
a

a
a

D
aa

aB  

 
The Jacobi iterative method (Eqn. 88) is then as follows: 
 

kk uTBbDu )(1 +−=+  
or, 
 

)(where, 111 TBDPPubDu kk +−=−= −−+  
 
alternatively, 
 

)(11 ∑
≠

+ −=
ij

k
jiji

ii

k
i uab

a
u  

 
or: 

)(11 ∑−+=+

j

k
jiji

ii

k
i

k
i uab

a
uu  

 
Jacobi method is convergent if the iteration matrix P is convergent. A convergent matrix 
is a matrix whose spectral radius is less than unity. Spectral radius is the largest the 
eigenvalue of a square matrix, in this case P.  
 
A more practical method to study the convergence of the method is to study the norm of 
the solution vector change, δ, from one iteration to another. δ is given as: 
 

 ∑ −−=
i

k
i

k
i

k uu 1δ  

 
The method is convergent if δk+1/δk<1 for large values of k. In fact, for large k’s, this 
ratio is approximately equal to the spectral radius of P. It should be noted that if Jacobi 
method is convergent, the Gauss-Seidel method will have a faster convergence. 
 
Finally, Jacobi and Gauss-Seidel methods converge if the coefficient matrix A is strictly 
diagonally dominant, i.e., 
 

∑
≠

>
ij

ijii aa  

 
The convergence rate increases if the left hand side is much bigger than the right hand 
side. The above condition is indeed the simplest. As an example, when applied to the 
Laasonen method, this condition requires that: 
 



 43

( ) 0/2 >∆∆ tx  
 
that is, the time-step must be positive. For a given grid spacing, smaller time-steps will 
result in faster convergence. Similarly, for a fixed time-step, larger grid spacing results in 
a faster convergence. It should be stressed that a converged numerical solution is not 
necessarily an accurate solution.  Some typical graphs of the residual value for one of the 
flow equations plotted against iteration number are shown in Fig. 11.  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Fig. 11. Variation of Residual with the number of iteration 
 
 
 
 

Number of Iteration 

(a) Converging (b) Diverging 

r r

Number of Iteration 



 44

 

6 Building a Mesh  
 
One of the most cumbersome and time consuming part of the CFD is the mesh 
generation.  Although for very simple flows, mesh generation is easy, it becomes very 
complex when the problem has many cavities and passages. Mesh generation is basically 
the discretization of the computational domain. The mesh in finite difference methods 
consists of a set of points, which are called nodes. The finite volume method considers 
points that form a set of volumes which are called cells. The finite element methods use 
sub-volumes called elements which have nodes where the variables are defined. Values 
of the dependent variables, such as velocity, pressure, temperature, etc. will be described 
for each element. 
 

6.1 Element Form 
Various forms of elements can be used. However, the most common type in CFD 
programs is a hexahedron with eight nodes, one at each corner, and this is known as a 
brick element or volume. For two-dimensional applications the equivalent element is a 
four-noded quadrilateral. Some finite volume programs have now been released which 
have the ability to use tetrahedral in three dimensions or triangles in two dimensions. 
Most finite element CFD codes will allow these elements to be used together with a small 
range of other element types. Figure 12 shows some of the commonly used sub-domains.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Typical computational elements. 
 
Before generating the mesh, we should know something about the flow behavior. For 
instance, where in the flow field we have boundary layers, vortices, large gradients in 
pressure or velocity, etc. The mesh size and shape should be such that it can capture the 
proper physical conditions that occur in the flow.  For regions where large gradients exist, 

3-noded triangle 4-noded triangle 

4-noded tetrahedral 6-noded prism 8-noded hexahedral 

square 



 45

large number of points within the mesh is needed. This is due to using very simple 
variation of the parameter, usually, linear, within the each element. Thus the mesh should 
be small enough so that a linear approximation between two points is valid.  
 
This is depicted in Fig. 13, were the variation of function u is given along the coordinate 
x.  We will use a linear variation between the points of a numerical solution.  If  a coarse 
mesh (∆xL) is used for the numerical calculation of the curve, the results would be far 
from the actual variation. However, a fine mesh (∆xS) can produce results which are close 
to the actual points. The linear approximation results in large errors where the gradient of 
u along x is large.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 13. Coarse and fine mesh representation of function u. 
 
One of the main difficulties of mesh generation is that, in many cases we do not know 
where the large gradients are.  Usually, along the solid surfaces, where the boundary 
layer is developed, we need to put more points close to the surface in the direction normal 
to the surface. Another example is the large pressure changes close to a shock wave in 
compressible flows. Grid refinement is needed to resolve important flow details. 
Adaptive grid generation is the solution for complex physical and geometrical problems 
in which the location of large gradients is not predictable or varies with time, but this is 
beyond the scope of this text. Generally, refinement is needed near walls, stagnation 
points, in separation regions, and in wake regions. By increasing number of nodes better 
accuracy is achieved. Solution should always (if possible) be based on grid independence 
tests with same style and mesh arrangement.  
 
Grid generation can be assigned to two distinct categories, structured or unstructured 
grids. Relating the mesh structure to the numerical method; finite difference programs 
require a mesh to have a regular structure and finite element programs can use a mesh 

∆xL 
∆xS 

u 

∆x



 46

with an irregular structure. In theory finite volume programs could use a mesh with an 
irregular structure, but many implementations insist that the mesh has a regular structure.  
When a mesh with a regular structure is used there is an advantage in that the solver 
program should run faster than if a mesh with an irregular structure is used. This is due to 
the implicit relationship that exists between the number of a cell or a point and the 
number of its neighbors in a regular mesh, which enables data to be found easily. No such 
relationship occurs for meshes that have an irregular structure and so when trying to find 
the values of flow variables in neighboring volumes there must be a computational 
overhead. This often takes the form of a look-up table which relates the faces to the cells 
or the nodes to the elements. 
 

6.2 Structured Grid 
 
The main objective of generating a structured grid is to determine the coordinates 
transformation that maps the body fitted non-uniform non-orthogonal physical space 
(x,y,z) into the transformed orthogonal computational space (ξ,η,ζ). 
 

Figure 14- The Transformed Computational Domain 
 

There are two steps in generating a structured grid: a) specification of the boundary point 
distribution, b) determination of the interior point distribution. The three popular methods 
for generating structured grids are: 
 
 
 
 

x 

y 

ξ 

η 

Γ1 

Γ2 
Γ3 

Γ4 

Γ*
1 

Γ*
2 

Γ*
3 

Γ*
4 

Physical domain Computational domain 



 47

6.2.1 Conformal mapping method 
 
In a conformal mapping the angles between grid lines in computational and physical 
domains are the same. This is the most accurate method, but the application of this 
method is limited to two-dimensional problems with simple geometries. 
 

6.2.2 Algebraic method 
 
This is one of the most common methods used in commercial codes appropriate for 
several engineering applications. Clustering and stretching of grid elements using 
algebraic method can be done by different functions such as: polynomial, trigonometric, 
logarithmic, and geometric functions.  Using the algebraic grid generation results in a 
good control over the grid structure and is relatively simple to apply. 
 

6.2.3 Differential equation method 
 
The partial differential equations used to generate a grid can be of elliptic, parabolic, or 
hyperbolic type. The most applied one is the elliptic type. In this case we want to have 
control over the followings: 

a) Grid point distribution on the boundaries, 
b) The angle between the boundaries and the gridlines, and 
c) The spacing between the gridlines.   

 

6.2.4 Block-structured method 
 
When the geometry is complex, it is very difficult to generate a single zone grid with 
adequate control on the distribution of the mesh points using structured grids.  There are 
three main types of domain decomposition. These are patched zones, overlapped zones, 
and overlaid zones. Patched zones have a common boundary line (see Fig. 15). The mesh 
lines across the boundaries may be continuous or discontinuous49. In the second 
technique, an overlap region exists between the zones. The extent of that region may be 
from one up to several mesh points. In the third technique, which is also known as the 
Chimera method. Smaller zones are defined on top of a base grid. Inter-zone data transfer 
is accomplished by interpolation.  
 
The application of block-structured grid with an algebraic grid generation for each block 
is explained by the following example: 
 

6.3 Unstructured grid 
 
Unstructured grids have the advantage of generality in that they can be made to conform 
to nearly any desired geometry. This generality, however, comes with a price. The grid 



 48

generation process is not completely automatic and may require considerable user 
interaction to produce grids with acceptable degrees of local resolution while at the same 
time having a minimum of element distortion. Unstructured grids require more 
information to be stored and recovered than structured grids (e.g., the neighbor 
connectivity list), and changing element types and sizes can increase numerical 
approximation errors. 
 
A popular type of unstructured grid consists of tetrahedral elements (Fig. 15). These grids 
tend to be easier to generate than those composed of hexahedral elements, but they 
generally have poorer numerical accuracy. For example, it is difficult to construct 
approximations that maintain an accurate propagation of one-dimensional flow 
disturbances because tetrahedral grid elements have no parallel faces. 
 
In summary, the best choice for a grid system depends on several factors: convenience in 
generation, memory requirements, numerical accuracy, flexibility to conform to complex 
geometries and flexibility for localized regions of high or low resolution.  
 
 
 

Figure 15. Different Mesh Types 
 

 
 
 
 
 
 

 
Polyhedra Elements    Mesh Subdivision and/or Multiblock 



 49

7   References 
                                                           
1 Hirsch, C., “Numerical Computation of Internal and External Flows”,  John Wiley & 
Sons, 1992. 
 
2 Tannehill, J.C., Anderson, D.A., and Pletcher, R.H., “Computatioal Fluid Mechanics 
and Heat Transfer,” Taylor & Francis, 1997. 
 
3 Zienkiewicz, O.C.  and Taylor, R.L., “The Finite Element Method- Vol 2: Solid and 
Fluid Mechanics,” McGraw-Hill, New York, 1991. 
 
4 Reddy, J.N., “An Introduction to the Finite Element Method,” McGraw-Hill, 1993.  
 
5 Smith, G.D., “Numerical Solution of Partial  Differential Equations: Finite Difference 
Methods”, 3rd edn, Claredon Press, Oxford, 1985. 
 
6 Tyn Myint-U, “Partial Differential Equations of Mathematical Physics,” Elsevier 
North Holland, Inc., 1980. 
 
7 Poo, J.Y., and Ashgriz, N., “Curvature Calculation in Interfaces,” J. Compt. Phys., vol. 
84, no. 2, pp.483-491, 1989. 
 
8 Brackbill, J.U., Kothe, D.B. and Zemach, C., ''A continuum method for modeling 
surface tension,'' J. Comput. Phys. 100 , 335 (1992). 
 
9 Ashgriz, N., and Poo, J. Y. "FLAIR: Flux Line-segment Advection and Interface 
Reconstruction,'' Journal of Computational Physics, Vol. 93, No. 2, pp. 449-46, 1991. 
 
10 Mashayek, F., and Ashgriz, N., "A Hybrid Finite Element - Volume of Fluid Method 
for Simulating Free Surface Flows and Interfaces,''  Int. Journal of  Numerical Methods 
in Fluids, Vol. 20, No. 10, pp. 1363-1380, 1995. 
 
11 Hildebrand, F.B.,  Introduction to Numerical Analysis, McGraw-Hill, New York, 1956. 
 
12 Chapra, S.C., Canale, R.P., Numerical Methods for Engineers, McGraw-Hill, New 
York, 1988.  
 
13 Gottlieb, D. and Orzag, S.A., “Numerical Analysis of Spectral Methods: Theory and 
Applications,” SIAM, Philadelphia, 1977.   
 
14 Richardson, L.F.,  “The ApproximateArithmeticalSolution by Finite Differences of 
Physical Problems Involving Differenctial Equations, with an Application to the Stresses 
in a Masonary Dam,” Philos. Trans. R. Soc. London, Ser. A, vol. 210, pp. 307-357, 
(1910). 
 



 50

                                                                                                                                                                             
15 DuFort, E.C., and Frankel. S.P., “Stability Conditions in the Numerical Treatment of 
Parabolic Equations,” Math. Tables Other Aids Comput., vol. 7, pp. 135-152, (1953). 
 
16 Laasonen, P., Über eine Methode zur Lösung der Warmeleitungsgleichung, Acta 
Math., vol. 81, pp. 309-317, 1949. 
 
17 Crank, J. and Nicolson, P., “ Practical Method for Numerical Evaluation of Solutions 
of Partial Differential Equations of the Heat-Conduction Type, Proc. Cambridge Philos. 
Soc. , vol. 43, pp. 50-67, 1947. 
 
18 Lax, P.D., “Weak Solution of Nonlinear Hyperbolic Equations and their Numerical 
Computations., Commun. Pure Appl. Math., vol. 7, pp. 159-193, 1954. 
 
19 Lax, P.D., and Wendroff, B., “ Systems of Conservation  Law, Commun. Pure Appl. 
Math., vol. 13, pp. 217-237, 1960. 
 
20 MacCormack, R.W., “The effect of Viscosity in Hypervelocity Impact Cratering,”  
AIAA paper 69-354, Cincinnati, Ohio, 1969. 
 
21 Godunov, S.K., “Finite Difference Method for Numerical Computation of 
Discontinuous Solutions of the Equations of Fluid Dynamics,” Mat. Sb., vol. 47, pp. 271-
306, 1959. 
 
22 Van Leer, B., “Towards the Ultimate Conservative Difference Scheme, V: A Second 
order Sequel to Gudonov’s Method,” J. Comput. Phys., vol. 32, pp. 101-136, 1979. 
 
23 Van Leer, B. “Towards the ultimate conservative difference scheme. I. The quest of 
monotinicity,” in Lecture Notes in Physics, vol. 18, Springer Verlag, Berlin, p. 163, 1973. 
 
24 Roe, P.L., “The Use of the Reimann Problem in Finite-Diference Schemes,” Lect. Note 
Phys., vol. 141, Springer-Verlag, New York, pp 354-359, 1980. 
 
25 Roe, P.L., “Approximate Reimann Solvers, Parameter Vectors and Difference 
Schemes”, J. Comput. Phys., vol 43, pp. 357-372, 1981. 
 
26 Woodward, P.R.,  and P. Colella, P.,Lecture Notes in Physics, Vol. 141 (Springer-
Verlag, New York/Berlin, (1981), p. 434. 
 
27 Harten, A., “High-Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. 
Phys. 49, pp. 357-385, 1983. 
 
28 Colella, P.,  and H.M. Glaz, J. Comp. Phys. 59, 264, 1985. 
 
29 Colella, P., and P.R. Woodward, J. Comp. Phys. 54, 174, 1984. 
 



 51

                                                                                                                                                                             
30 Abbott, M. B. and Basco, D. R., “Computational fluid dynamics: An introduction for 
engineers,” Harlow, Essex, England: Longman Scientific & Technical; New York, NY:    
Wiley, 1989. 
 
31 Leonard, B.P., “A Stable and Accurate Convective Modeling Procedure Based on 
Quadratic Upstream Interpolation,” Comput. Methods Appl. Mech. Eng.  Vol. 19, pp. 59-
98, 1979.  
 
32 Harlow, F. H., and J. E. Welch, Phys. Fluids 8, 2182, 1965. 
 
33 Patankar, S.V.,  and D. B. Spalding, Int. J. Heat Mass Transfer 15, 1787, 1972. 
 
34 Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, 
DC, 1980. 
 
35 Harlow, F.H. and Welch, J.E., “Numerical Calculation of Time –Dependent Viscous  
Incompressible Flow of Fluids with Free Surface, Phys. Fluids, vol. 8, pp- 2182-2189, 
1965. 
 
36 Chorin, A.J., “Numerical Solution to the Navier-Stokes Equations”, Math. Comput., 
vol. 22, pp. 745-762, 1968. 
 
37 Issa, R.I., A. Gosman, A.D., and Watkins, A.P.,  “The computation of compressible 
and incompressible flows by a non-iterative implicit scheme, J. Comput. Phys. 62, 66 
(1986). 
 
38 Issa, R.I., “Solution of the implicitly discretized fluid flow equations by operator-
splitting,” J. Comput. Phys. 62, 40 (1986). 
 
39 Arakawa, A.,  J. Comput. Phys. 1, 119, 1966. 
 
40 Rhie, C.M.  and Chow, W.L., AIAA J. 11, 1525, 1983. 
 
41 Rhie, C.M.,  Comput. Fluids 13, 443 (1985). 
 
42 Melaaen, M.C., Int. J. Numer. Methods Fluids 15, 895 (1991). 
 
43 Coelho, P.J.,  and J. C. F. Pereira, Int. J. Numer. Methods Fluids 14, 423 (1992). 
 
44 Frankel, S.P., “Convergence Rates of Iterative Treatments of Partial Differential 
Equations,” Math. Tables Other Aids Comput., vol. 4, pp. 65-75, (1950). 
 
45 Peceman, D.W., and Rachford, H.H., “The Numerical Solution of Parabolic and 
Elliptic Differential Equations., J. Soc. Ind. Appl. Math.vol. 3, pp. 28-41, 1955. 
 



 52

                                                                                                                                                                             
46 Briley, W.R. and McDonald, H., “Solution of the Three-Dimensional Compressible 
Navier-Stokes Equations by an Implicit Technique,” Proc. Fourth Int. Conf. Num. 
Methods Fluid Dyn., Boulder Colorado, Lect. Notes Phys., vol. 35, Springer-Verlag, New 
York, pp. 105-110, 1974. 
 
47 Beam, R.M., and Warming, R.F., “An Implicit Finite Difference Algorithm for 
Hyperbolic Systems in Conservation Law Form,”  J. Comput. Physics., vol. 22, pp. 87-
110., 1976. 
 
48 Hirt, C.W., “Heuristic Stability Theory for Finite Difference Equatios,” J. Comput. 
Phys., vol. 2, pp.339-355, 1968. 
 
49 Atta, E.H., and Vadyak, J.,  AIAA J., vol. 21, 1271, 1983. 


